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Link Mining
 Traditional machine learning and data mining 

approaches assume:
 A random sample of homogeneous objects from single 

relation

 Real world data sets:
 Multi-relational, heterogeneous and semi-structured 

 Link Mining
 newly emerging research area at the intersection of research 

in social network and  link analysis, hypertext and web mining, 
graph mining, relational learning and inductive logic 
programming



Linked Data

 Heterogeneous, multi-relational data represented as 
a graph or network

 Nodes are objects
• May have different kinds of objects

• Objects have attributes

• Objects may have labels or classes

 Edges are links
• May have different kinds of links

• Links may have attributes

• Links may be directed, are not required to be binary



Sample Domains

 web data (web)

 bibliographic data (cite)

 epidimiological data (epi)

 communication data (comm)

 customer networks (cust)

 collaborative filtering problems (cf)

 trust networks (trust)

 biological data (bio)



Link Mining Tasks

 Object Classification

 Object Type Prediction

 Link Type Prediction

 Link Prediction

 Link Cardinality Estimation

 Entity Resolution

 Group Detection 

 Subgraph Discovery

 Graph Alignment



Object Classification

 Predicting the category of an object based on its 
attributes and its links and attributes of linked objects

 web: Predict the category of a web page, based on words that occur 
on the page, links between pages, anchor text, html tags, etc.

 cite: Predict the topic of a paper, based on word occurrence, 
citations, co-citations

 epi: Predict disease type based on characteristics of the patients 
infected by the disease



Object Class Prediction

 Predicting the type of an object based on its attributes 
and its links and attributes of linked objects

 comm: Predict whether a communication contact is by email, phone 
call or mail.

 cite: Predict the venue type of a publication (conference, journal, 
workshop)



Link Type Classification

 Predicting type or purpose of link based on properties of 

the participating objects 

 web: predict advertising link or navigational link; predict an advisor-

advisee relationship

 epi: predicting whether contact is familial, co-worker or 

acquaintance



Predicting Link Existence

 Predicting whether a link exists between two objects

 web: predict whether there will be a link between two pages

 cite: predicting whether a paper will cite another paper

 epi: predicting who a patient’s contacts are



Link Cardinality Estimation I

 Predicting the number of links to an object

 web: predict the authoratativeness of a page based on the number 
of in-links; identifying hubs based on the number of out-links 

 cite: predicting the impact of a paper based on the number of 
citations

 epi: predicting the number of people that will be infected based on 
the infectiousness of a disease.



Link Cardinality Estimation II

 Predicting the number of objects reached along a path 
from an object

 Important for estimating the number of objects that will 
be returned by a query

 web: predicting number of pages retrieved by crawling a site  

 cite: predicting the number of citations of a particular author in a 
specific journal



Entity Resolution

 Predicting when two objects are the same, based on 

their attributes and their links

 aka: record linkage, duplicate elimination, identity 

uncertainty 

 web: predict when two sites are mirrors of each other.

 cite: predicting when two citations are referring to the same paper. 

 epi: predicting when two disease strains are the same

 bio: learning when two names refer to the same protein



Group Detection

 Predicting when a set of entities belong to the same 

group based on clustering both object attribute 

values and link structure

 web – identifying communities 

 cite – identifying research communities



Subgraph Discovery

 Find characteristic subgraphs

 Focus of graph-based data mining (Cook & Holder, 

Inokuchi, Washio & Motoda, Kuramochi & Karypis, 

Yan & Han)

 bio – protein structure discovery

 comm – legitimate vs. illegitimate groups

 chem – chemical substructure discovery



Graph Alignment

 Schema mapping, schema discovery, schema 

reformulation

 cite – matching between two bibliographic sources

 web - discovering schema from unstructured or semi-

structured data

 bio – mapping between two medical ontologies



Link Mining Tasks

 Object Classification

 Object Type Prediction

 Link Type Prediction

 Link Prediction

 Link Cardinality Estimation

 Entity Resolution

 Group Detection 

 Subgraph Discovery

 Graph Alignment



Link Mining Challenges

 Logical vs. Statistical dependencies

 Feature construction

 Instances vs. Classes

 Collective Classification

 Collective Consolidation

 Effective Use of Labeled & Unlabeled Data

 Link Prior Probability

 Closed vs. Open World

Challenges common to any link-based statistical model (Bayesian

Logic Programs, Conditional Random Fields, Probabilistic

Relational Models, Markov Logic, Relational Probability Trees,

Stochastic Logic Programming to name a few)



Logical vs. Statistical Dependence

 Coherently handling two types of dependence 

structures:

 Link structure - the logical relationships between 

objects

 Probabilistic dependence - statistical relationships 

between attributes

 Challenge: statistical models that support rich logical 

relationships 

 Model search complicated by the fact that attributes 

can depend on arbitrarily linked attributes -- issue: 

how to search this huge space
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Feature Construction

 In many cases, objects are linked to a set of 

objects.  To construct a single feature from this set 

of objects, we may either use:

 Aggregation

 Selection
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Individuals vs. Classes

 Does model refer 

 explicitly to individuals

 classes or generic categories of individuals

 On one hand, we’d like to be able to model that a 

connection to a particular individual may be highly 

predictive

 On the other hand, we’d like our models to generalize to 

new situations, with different individuals



Instance-based Dependencies
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Class-based Dependencies
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Collective classification

 Using a link-based statistical model for classification

 Inference using learned model is complicated by the 

fact that there is correlation between the object 

labels



Collective Resolution

 Using a link-based statistical model for entity 

resolution

 Consolidation decisions should not be made 

independently



Labeled & Unlabeled Data

 In link-based domains, unlabeled data provide three 

sources of information:

 Helps us infer object attribute distribution

 Links between unlabeled data allow us to make use 

of attributes of linked objects

 Links between labeled data and unlabeled data 

(training data and test data) help us make more 

accurate inferences 



Link Prior Probability

 The prior probability of any particular link is typically 

extraordinarily low

 For medium-sized data sets, we have had success 

with building explicit models of link existence

 It may be more effective to model links at higher 

level--required for large data sets!



Closed World vs. Open World 

 The majority of SRL approaches make a closed 

world assumption, which assumes that we know all 

the potential entities in the domain

 In many cases, this is unrealistic 



Link Mining Summary

 Link Mining Tasks

 Object Classification

 Object Type Prediction

 Link Type Prediction

 Link Prediction

 Link Mining Challenges

 Logical vs. Statistical 

dependencies

 Feature construction

 Instances vs. Classes

 Collective Classification

 Link Cardinality Estimation

 Entity Resolution

 Group Detection 

 Subgraph Discovery

 Graph Alignment

 Collective Resolution

 Effective Use of Labeled & 

Unlabeled Data

 Link Prior Probability

 Closed vs. Open World
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Collective Classification 

The Problem

Collective Relational Classification

Algorithms



Traditional Classification

Training Data Test Data

Y

X3

X2

X1

Predict Y based on
attributes Xi



Relational Classification (1)

Training Data Test Data

Correlations among linked instances

autocorrelation: labels are likely to be the same

homophily: similar nodes are more likely to be linked



Relational Classification (2)

Training Data Test Data

Irregular graph structure



Relational Classification (3)

Training Data Test Data

Links between training set & test set 

learning with partial labels or within network classification



The Problem

 Relational Classification: predicting the 
category of an object based on its 
attributes and its links and attributes of 
linked objects

 Collective Classification: jointly predicting 
the categories for a collection of 
connected, unlabelled objects

Neville & Jensen 00, Taskar , Abbeel & Koller 02, Lu & Getoor 03, 

Neville, Jensen & Galliger 04, Sen & Getoor TR07, Macskassy & 

Provost 07, Gupta, Diwam & Sarawagi 07, Macskassy 07, 

McDowell, Gupta & Aha 07



Example: Linked Bibliographic Data
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Feature Construction

 Objects are linked to a set of objects.  To construct 

features from this set of objects, we need feature 

aggregation methods

Kramer, Lavrac & Flach 01, Perlich & Provost 03, 04, 05, Popescul
& Ungar 03, 05, 06, Lu & Getoor 03, Gupta, Diwam & Sarawagi 07
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Feature Construction

 Objects are linked to a set of objects.  To construct 

features from this set of objects, we need  feature 

aggregation methods

 Instances vs. generics

 Features may refer 

• explicitly to individuals

• classes or generic categories of individuals

 On one hand, want to model that a particular 

individual may be highly predictive

 On the other hand, want  models to generalize to 

new situations, with different individuals



Aggregate Features Used

Mode Prop Count Exists SQL FOL

PRMs, Koller et al. X X

RMNs, Taskar et al. X

MLNs, Domingos et al. X

RDNs, Neville et al. X

Lu & Getoor, ICML03 X X X

Sen & Getoor, TR07 X X X

Maskassy & Provost, 

JMLR07
X

Gupta et al,. ICML07 X X

McDowell et al., AAAI07 X



Formulation

 Local Models

 Collection of Local Conditional Models

 Inference Algorithms: 

• Iterative Classification Algorithm (ICA)

• Gibbs Sampling (Gibbs)

 Global Models

 (Pairwise) Markov Random Fields

 Inference Algorithms:

• Loopy Belief Propagation (LBP)

• Gibbs Sampling

• Mean Field Relaxation Labeling (MF)



CC Inference Algorithms

MF LBP Gibbs ICA

Chakrabarti et al SIGMOD98 X

Jensen & Neville SRL00 X

Getoor et al. IJCAI01 WS X

Taskar et al. UAI02 X

Lu & Getoor ICML03 X

Neville & Jensen KDD04 X

Sen & Getoor TR07 X X X

Maskassy & Provost JMLR07 X X X

Gupta et al. ICML07 X X

McDowell et al. AAAI07 X X



Local Classifiers Used in ICA

NB LR DT kNN wvRN

Chakrabarti et al. 1998 X

Jensen & Neville 2000 X

Lu & Getoor ICML03 X X

Neville et al. KDD04 X X

Macskassy & Provost JMLR07 X

McDowell et al. AAAI07 X X



ICA: Learning

 label set:           
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ICA: Inference (1)
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ICA: Inference (2)
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Experimental Evaluation

 Comparison of Collective Classification Algorithms

 Mean Field Relaxation Labeling (MF)

 Iterative Classification Algorithm (ICA)

 Loopy Belief Propagation (LBP)

 Baseline: Content Only

 Datasets

 Real Data

• Bibliographic Data (Cora & Citeseer), WebKB, etc.

 Synthetic Data

• Data generator which can vary the class label correlations 

(homophily), attribute noise, and link density



Results on Real Data

Algorithm Cora CiteSeer WebKB

Content Only 66.51 59.77 62.49

ICA 74.99 62.46 65.99

Gibbs 74.64 62.52 65.64

MF 79.70 62.91 65.65

LBP 82.48 62.64 65.13

Sen and Getoor, TR 07



Effect of Structure

Results clearly indicate that algorithms’ performance 

depends (in non-trivial ways) on structure

Varying link density for homophilic graphs
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Entity Resolution 

The Problem

Relational Entity Resolution

Algorithms



before after

InfoVis Co-Author Network Fragment



“Jonthan Smith”

John 
Smith

Jonathan Smith

James 
Smith

“Jon Smith”

“Jim Smith”

“John Smith”

The Entity Resolution Problem

“James Smith”

Issues:

1. Identification

2. Disambiguation

“J Smith”

“J Smith”



Pair-wise classification

?
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Attribute-based Entity Resolution

1. Choosing threshold: precision/recall tradeoff
2. Inability to disambiguate
3. Perform transitive closure?



Entity Resolution 

The Problem

Relational Entity Resolution

Algorithms



Relational Entity Resolution

 References not observed independently

 Links between references indicate relations between 

the entities

 Co-author relations for bibliographic data

 To, cc: lists for email

 Use relations to improve identification and 

disambiguation

Pasula et al. 03, Ananthakrishna et al. 02, Bhattacharya & Getoor 
04,06,07, McCallum & Wellner 04, Li, Morie & Roth 05, Culotta & 
McCallum 05, Kalashnikov et al. 05, Chen, Li, & Doan 05, Singla & 
Domingos 05, Dong et al. 05



Relational Identification

Very similar names.

Added evidence from 
shared co-authors



Relational Disambiguation

Very similar names 
but no shared 
collaborators



Relational Constraints

Co-authors are 
typically distinct



Collective Entity Resolution 

One resolution 
provides evidence 
for another => joint 
resolution



Entity Resolution with Relations

 Naïve Relational Entity Resolution

 Also compare attributes of related references 

 Two references have co-authors w/ similar names 

 Collective Entity Resolution

 Use discovered entities of related references

 Entities cannot be identified independently

 Harder problem to solve



Entity Resolution 

 The Problem

 Relational Entity Resolution

 Algorithms

 Relational Clustering (RC-ER)
• Bhattacharya & Getoor, DMKD’04, Wiley’06, DE Bulletin’06,TKDD’07
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Relational Clustering (RC-ER)
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Cut-based Formulation of RC-ER
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Good separation of attributes
Many cluster-cluster relationships
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Worse in terms of attributes
Fewer cluster-cluster relationships
 Aho-Johnson1, Everett-Johnson2 



Objective Function

 Greedy clustering algorithm: merge cluster pair with max 

reduction in objective function

Common cluster neighborhood Similarity of attributes

weight for 
attributes

weight for 
relations

similarity of
attributes

Similarity based on relational 
edges between ci and cj

 Minimize:
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Measures for Attribute Similarity

 Use best available measure for each attribute

 Name Strings: Soft TF-IDF, Levenstein, Jaro

 Textual Attributes: TF-IDF

 Aggregate to find similarity between clusters

 Single link, Average link, Complete link

 Cluster representative



Relational Similarity: Example 1
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Relational Similarity: Example 2

C. Walshaw

C. Walshaw

M. G. Everett

S. Johnson

M. Cross

K. McManus

M. Everett

S. Johnson

M. Cross

Alfred V. Aho

Stephen C. 
Johnson

Jefferey D. Ullman

A. Aho

S. Johnson

J. Ullman

P1,
P2

P2

P1,
P2

P1,
P2 P4,

P5

P4,
P5

No neighborhood cluster is shared: no 
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Comparing Cluster Neighborhoods

 Consider neighborhood as multi-set 

 Different measures of set similarity

 Common Neighbors: Intersection size

 Jaccard’s Coefficient: Normalize by union size

 Adar Coefficient: Weighted set similarity

 Higher order similarity: Consider neighbors of 

neighbors



Relational Clustering Algorithm

1. Find similar references using ‘blocking’

2. Bootstrap clusters using attributes and relations

3. Compute similarities for cluster pairs and insert into priority 
queue

4. Repeat until priority queue is empty

5. Find ‘closest’ cluster pair

6. Stop if similarity below threshold

7. Merge to create new cluster

8. Update similarity for ‘related’ clusters

 O(n k log n) algorithm w/ efficient implementation 



Entity Resolution 

 The Problem

 Relational Entity Resolution

 Algorithms

 Relational Clustering (RC-ER)

 Probabilistic Model (LDA-ER)
• SIAM SDM’06, Best Paper Award

 Experimental Evaluation



Probabilistic Generative Model 

for Collective Entity Resolution

 Model how references co-occur in data

1. Generation of references from entities

2. Relationships between underlying entities

• Groups of entities instead of pair-wise relations



Discovering Groups from 

Relations

Bell Labs Group

Alfred V Aho

Jeffrey D Ullman

Ravi Sethi

Stephen C Johnson

Parallel Processing Research Group

Mark Cross

Chris Walshaw Kevin McManus

Stephen P Johnson

Martin Everett

P1: C. Walshaw, M. Cross, M. G. Everett, 
S. Johnson

P2: C. Walshaw, M. Cross, M. G. Everett,
S. Johnson, K. McManus

P3: C. Walshaw, M. Cross, M. G. Everett

P4: Alfred V. Aho, Stephen C. Johnson, 
Jefferey D. Ullman

P5: A. Aho, S. Johnson, J. Ullman

P6: A. Aho, R. Sethi, J. Ullman



Latent Dirichlet Allocation ER 
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 Entity label a and group label z

for each reference r

 Θ: ‘mixture’ of groups for each 

co-occurrence

 Φz: multinomial for choosing 

entity a for each group z

 Va: multinomial for choosing 

reference r from entity a

 Dirichlet priors with α and β



Generating References from 

Entities

 Entities are not directly observed

1. Hidden attribute for each entity

2. Similarity measure for pairs of attributes

 A distribution over attributes for each entity

S C Johnson Stephen C Johnson S Johnson Alfred Aho M. Cross

Stephen C Johnson

0.2 0.6 0.2 0.0 0.0



Approx. Inference Using Gibbs 

Sampling

 Conditional distribution over labels for each ref.

 Sample next labels from conditional distribution

 Repeat over all references until convergence

 Converges to most likely number of entities
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Faster Inference: Split-Merge 

Sampling

 Naïve strategy reassigns references individually

 Alternative: allow entities to merge or split

 For entity ai, find conditional distribution for

1. Merging with existing entity aj

2. Splitting back to last merged entities

3. Remaining unchanged

 Sample next state for ai from distribution

 O(n g + e) time per iteration compared to O(n g + n e)



Entity Resolution 

 The Problem

 Relational Entity Resolution

 Algorithms

 Relational Clustering (RC-ER)

 Probabilistic Model (LDA-ER)

 Experimental Evaluation



Evaluation Datasets

 CiteSeer

 1,504 citations to machine learning papers (Lawrence et al.)

 2,892 references to 1,165 author entities

 arXiv

 29,555 publications from High Energy Physics (KDD Cup’03)

 58,515 refs to 9,200 authors

 Elsevier BioBase

 156,156 Biology papers (IBM KDD Challenge ’05) 

 831,991 author refs

 Keywords, topic classifications, language, country and affiliation 

of corresponding author, etc



Baselines

 A: Pair-wise duplicate decisions w/ attributes only

 Names: Soft-TFIDF with Levenstein, Jaro, Jaro-Winkler

 Other textual attributes: TF-IDF

 A*: Transitive closure over A

 A+N: Add attribute similarity of co-occurring refs

 A+N*: Transitive closure over A+N

 Evaluate pair-wise decisions over references

 F1-measure (harmonic mean of precision and recall)



ER over Entire Dataset

 RC-ER & LDA-ER outperform baselines in all datasets

 Collective resolution better than naïve relational resolution

 RC-ER and baselines require threshold as parameter

 Best achievable performance over all thresholds 

 Best RC-ER performance better than LDA-ER

 LDA-ER does not require similarity threshold

Collective Entity Resolution In Relational Data, Indrajit Bhattacharya and Lise Getoor, 

ACM Transactions on Knowledge Discovery and Datamining, 2007

Algorithm CiteSeer arXiv BioBase

A 0.980 0.976 0.568

A* 0.990 0.971 0.559

A+N 0.973 0.938 0.710

A+N* 0.984 0.934 0.753

RC-ER 0.995 0.985 0.818

LDA-ER 0.993 0.981 0.645



ER over Entire Dataset

 CiteSeer: Near perfect resolution; 22% error reduction

 arXiv: 6,500 additional correct resolutions; 20% error reduction

 BioBase: Biggest improvement over baselines

Algorithm CiteSeer arXiv BioBase

A 0.980 0.976 0.568

A* 0.990 0.971 0.559

A+N 0.973 0.938 0.710

A+N* 0.984 0.934 0.753

RC-ER 0.995 0.985 0.818

LDA-ER 0.993 0.981 0.645



Name
Best F1 for 

ATTR/ATTR*

F1 for      

LDA-ER

cho_h 0.80 1.00

davis_a 0.67 0.89

kim_s 0.93 0.99

kim_y 0.93 0.99

lee_h 0.88 0.99

lee_j 0.98 1.00

liu_j 0.95 0.97

sarkar_s 0.67 1.00

sato_h 0.82 0.97

sato_t 0.85 1.00

shin_h 0.69 1.00

veselov_a 0.78 1.00

yamamoto_k 0.29 1.00

yang_z 0.77 0.97

zhang_r 0.83 1.00

zhu_z 0.57 1.00

Performance for Specific Names

arXiv

Significantly larger 

improvements for 

‘ambiguous names’



Trends in Synthetic Data

Bigger improvement with 

 bigger % of ambiguous refs

more refs per co-occurrence

more neighbors per entity0.7
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Roadmap

 Intro to Link Mining

 Link Mining Tasks

 Link Mining Challenges

 Some Link Mining Algorithms

 Collective Classification

 Entity Resolution

 Link Prediction

 Conclusion



Link Prediction 

 The Problem

 Predicting Relations

 Algorithms

 Link Labeling

 Link Ranking

 Link Existence



Links in Data Graph

chris@enron.com liz@enron.com
Email

chris37 lizs22
IM

555-450-0981 555-901-8812
TXT

Node 1 Node 2

mailto:chris@enron.com
mailto:liz@enron.com


 Links in Information Graph

Node 1 Node 2

Manager

Family

Chris Elizabeth

TimSteve



Predicting Relations

 Link Labeling

 Can use similar approaches to collective classification

 Link Ranking

 Many variations

• Diehl, Namata, Getoor, Relationship Identification for Social 

Network Discovery, AAAI07

 ‘Leak detection’

• Carvalho & Cohen, SDM07

 Link Existence

 HARD!

 Huge class skew problem

 Variations: Link completion, find missing link



Roadmap

 Intro to Link Mining

 Link Mining Tasks

 Link Mining Challenges

 Some Link Mining Algorithms

 Collective Classification

 Entity Resolution

 Link Prediction

 Conclusion



Putting Everything together….



Learning and Inference Hard

 Full Joint Probabilistic Representations

 Directed vs. Undirected

 Require sophisticated approximate inference 

algorithms

 Tradeoff: hard inference vs. hard learning

 Combinations of Local Classifiers

 Local classifiers choices

 Require sophisticated updating and truth 

maintenance or global optimization via LP

 Tradeoff: granularity vs. complexity

Many interesting and challenging research problems!!



Caveat: Link Mining & Privacy

 Obvious privacy concerns that need to be taken into 

account!!!

 A better theoretical understanding of when 

prediction is feasible will also help us understand 

what must be done to maintain privacy of graph data

 … Graph Re-Identification: study of anonymization

strategies such that the information graph cannot

be inferred from released data graph



Link Re-Identification
Communication data

Search data Social network data

Disease data

father-of

has hypertension
? Robert Lady

Query 2: 

“myrtle beach golf course job listings”

Query 1:

“how to tell if your wife is cheating on you”

same-user

call

friends

Zheleva and Getoor, Preserving the Privacy of Sensitive Relationshops in
Graph Data, PINKDD 2007



Attribute disclosure in OSNs

public profile

private profile

group affiliationfriends

Zheleva and Getoor, To Join or Not to Join: the Illusion of Privacy in 
Online Social Networks, WWW 2009



Conclusion

 Relationships matter!

 Structure matters!

 Killer Apps:

 Biology: Biological Network Analysis

 Computer Vision: Human Activity Recognition

 Information Extraction: Entity Extraction & Role labeling

 Semantic Web: Ontology Alignment and Integration

 Personal Information Management: Intelligent Desktop 

 While there are important pitfalls to take into account 
(confidence and privacy), there are many potential 
benefits and payoffs!



Thanks!

http://www.cs.umd.edu/linqs

Work sponsored by the National Science Foundation, 
KDD program, National Geospatial Agency, Google and Microsoft


