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®® % | ink Mining

o Traditional machine learning and data mining
approaches assume:

A random sample of homogeneous objects from single
relation

o Real world data sets:
Multi-relational, heterogeneous and semi-structured

o Link Mining

newly emerging research area at the intersection of research
In social network and link analysis, hypertext and web mining,

graph mining, relational learning and inductive logic
programming



® ® ® | Inked Data

o Heterogeneous, multi-relational data represented as
a graph or network

Nodes are objects
May have different kinds of objects
Objects have attributes
Objects may have labels or classes

Edges are links
May have different kinds of links
Links may have attributes
Links may be directed, are not required to be binary



® ® & Sample Domains

o web data (web)

o bibliographic data (cite)

o epidimiological data (epi)

o communication data (comm)

o customer networks (cust)

o collaborative filtering problems (cf)
o trust networks (trust)

o biological data (bio)



® ® @ |ink Mining Tasks

Object Classification
Object Type Prediction
_ink Type Prediction

_ink Prediction

_ink Cardinality Estimation
Entity Resolution

o Group Detection

o Subgraph Discovery

o Graph Alignment

O
O
O
O
O
o



Object Classification

Predicting the category of an object based on its
attributes and its links and attributes of linked objects

web: Predict the category of a web page, based on words that occur
on the page, links between pages, anchor text, html tags, etc.

cite: Predict the topic of a paper, based on word occurrence,
citations, co-citations

epi: Predict disease type based on characteristics of the patients
Infected by the disease



® ® © Opbject Class Prediction

o Predicting the type of an object based on its attributes
and its links and attributes of linked objects

o comm: Predict whether a communication contact is by email, phone
call or mail.

o cite: Predict the venue type of a publication (conference, journal,
workshop)



® ® @ | ink Type Classification

o Predicting type or purpose of link based on properties of
the participating objects

o web: predict advertising link or navigational link; predict an advisor-
advisee relationship

o epi: predicting whether contact is familial, co-worker or
acquaintance



® @ © Predicting Link Existence

o Predicting whether a link exists between two objects

o web: predict whether there will be a link between two pages
o cite: predicting whether a paper will cite another paper
o epi: predicting who a patient’s contacts are



Link Cardinality Estimation |

Predicting the number of links to an object

web: predict the authoratativeness of a page based on the number
of in-links; identifying hubs based on the number of out-links

cite: predicting the impact of a paper based on the number of
citations

epi: predicting the number of people that will be infected based on
the infectiousness of a disease.



® ® @ | ink Cardinality Estimation Il

o Predicting the number of objects reached along a path
from an object

o Important for estimating the number of objects that will
be returned by a query

o web: predicting number of pages retrieved by crawling a site

o cite: predicting the number of citations of a particular author in a
specific journal



O O O O

Entity Resolution

Predicting when two objects are the same, based on
their attributes and their links

aka: record linkage, duplicate elimination, identity
uncertainty

web: predict when two sites are mirrors of each other.

cite: predicting when two citations are referring to the same paper.
epi: predicting when two disease strains are the same

bio: learning when two names refer to the same protein



® ® @ Group Detection

o Predicting when a set of entities belong to the same
group based on clustering both object attribute
values and link structure

o web — identifying communities
o cite — identifying research communities



® ® © Subgraph Discovery

o Find characteristic subgraphs

o Focus of graph-based data mining (Cook & Holder,
Inokuchi, Washio & Motoda, Kuramochi & Karypis,
Yan & Han)

o bio — protein structure discovery
o comm — legitimate vs. illegitimate groups
o chem — chemical substructure discovery



® ® @ Graph Alignment

o Schema mapping, schema discovery, schema
reformulation

o cite — matching between two bibliographic sources

o web - discovering schema from unstructured or semi-
structured data

o bio — mapping between two medical ontologies



® ® @ |ink Mining Tasks

Object Classification
Object Type Prediction
_ink Type Prediction

_ink Prediction

_ink Cardinality Estimation
Entity Resolution

o Group Detection

o Subgraph Discovery

o Graph Alignment

O
O
O
O
O
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® ® @ | ink Mining Challenges

Logical vs. Statistical dependencies
Feature construction

Instances vs. Classes

Collective Classification

Collective Consolidation

Effective Use of Labeled & Unlabeled Data
Link Prior Probability

Closed vs. Open World

O 0O 0O 0O 0O 0O O O

Challenges common to any link-based statistical model (Bayesian
Logic Programs, Conditional Random Fields, Probabilistic
Relational Models, Markov Logic, Relational Probability Trees,
Stochastic Logic Programming to name a few)



® ® @ | ogical vs. Statistical Dependence

o Coherently handling two types of dependence
structures:

Link structure - the logical relationships between
objects

Probabilistic dependence - statistical relationships
between attributes

o Challenge: statistical models that support rich logical
relationships

o Model search complicated by the fact that attributes
can depend on arbitrarily linked attributes -- issue:
how to search this huge space






® ® © [eature Construction

o In many cases, objects are linked to a set of
objects. To construct a single feature from this set
of objects, we may either use:

Aggregation
Selection



® ® & Aggregation




® ® ¢ Selection



® ® © |ndividuals vs. Classes

o Does model refer
explicitly to individuals
classes or generic categories of individuals
o On one hand, we'd like to be able to model that a

connection to a particular individual may be highly
predictive

o On the other hand, we’d like our models to generalize to
new situations, with different individuals



® ® @ |nstance-based Dependencies
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® ® © Class-based Dependencies
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® ® © (Collective classification

o Using a link-based statistical model for classification

o Inference using learned model is complicated by the
fact that there Is correlation between the object
labels



® ® © Collective Resolution

o Using a link-based statistical model for entity
resolution

o Consolidation decisions should not be made
Independently



®® % | abeled & Unlabeled Data

o In link-based domains, unlabeled data provide three
sources of information:
Helps us infer object attribute distribution

Links between unlabeled data allow us to make use
of attributes of linked objects

Links between labeled data and unlabeled data
(training data and test data) help us make more
accurate inferences



® ® @ [ ink Prior Probability

o The prior probabillity of any particular link is typically
extraordinarily low

o For medium-sized data sets, we have had success
with building explicit models of link existence

o It may be more effective to model links at higher
level--required for large data sets!



®® ¢ Closed World vs. Open World

o The majority of SRL approaches make a closed
world assumption, which assumes that we know all
the potential entities in the domain

o In many cases, this is unrealistic



Link Mining Summary

o Link Mining Tasks

Object Classification
Object Type Prediction
Link Type Prediction
Link Prediction

o Link Mining Challenges

Logical vs. Statistical
dependencies

Feature construction
Instances vs. Classes
Collective Classification

Link Cardinality Estimation
Entity Resolution

Group Detection
Subgraph Discovery
Graph Alignment

Collective Resolution

Effective Use of Labeled &
Unlabeled Data

Link Prior Probability
Closed vs. Open World
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o Intro to Link Mining
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o Conclusion



® ® ¢ Collective Classification

oThe Problem
o Collective Relational Classification
o Algorithms
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Traditional Classification

Training Data
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Test Data
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® ® © Relational Classification (1)

Training Data Test Data

Correlations among linked instances
autocorrelation: labels are likely to be the same
homophily: similar nodes are more likely to be linked



® ® © Relational Classification (2)

Training Data Test Data

£

Irregular graph structure



® ® © Relational Classification (3)

Training Data Test Data

Links between training set & test set
learning with partial labels or within network classification



®®® The Problem

o Relational Classification: predicting the
category of an object based on its
attributes and its links and attributes of
linked objects

o Collective Classification: jointly predicting
the categories for a collection of
connected, unlabelled objects

Neville & Jensen 00, Taskar , Abbeel & Koller 02, Lu & Getoor 03,
Neville, Jensen & Galliger 04, Sen & Getoor TRO7, Macskassy &
Provost 07, Gupta, Diwam & Sarawagi 07, Macskassy 07,
McDowell, Gupta & Aha 07




® ® © Example: Linked Bibliographic Data

Objects:

Papers
Links
Authors L
Instituti Citation
nstitutions Co-Citation
Author-of

Labels: O O O Author-affiliation



® ® © [eature Construction

o Objects are linked to a set of objects. To construct
features from this set of objects, we need feature
aggregation methods

Kramer, Lavrac & Flach 01, Perlich & Provost 03, 04, 05, Popescul
& Ungar 03, 05, 06, Lu & Getoor 03, Gupta, Diwam & Sarawagi 07




® ® © Simple Aggregation

Other aggregates: count, min, max, prop, exists, selection



® ® © [eature Construction

o Objects are linked to a set of objects. To construct
features from this set of objects, we need feature
aggregation methods

o Instances vs. generics

Features may refer
explicitly to individuals
classes or generic categories of individuals

On one hand, want to model that a particular
iIndividual may be highly predictive

On the other hand, want models to generalize to
new situations, with different individuals



Aggregate Features Used

Mode | Prop | Count| Exists | SQL | FOL
PRMs, Koller et al. X X
RMNSs, Taskar et al. X
MLNs, Domingos et al. X
RDNSs, Neville et al. X
Lu & Getoor, ICMLO3 X X X
Sen & Getoor, TRO7 X X X
Maskassy & Provost, X
JMLRO7
Gupta et al,. ICMLO7 X X
McDowell et al., AAAIO7 X




® ® % Formulation

o Local Models
Collection of Local Conditional Models

Inference Algorithms:
Iterative Classification Algorithm (ICA)
Gibbs Sampling (Gibbs)

o Global Models
(Pairwise) Markov Random Fields

Inference Algorithms:
Loopy Belief Propagation (LBP)
Gibbs Sampling
Mean Field Relaxation Labeling (MF)



® ® @ CC Inference Algorithms

MF LBP Gibbs ICA
Chakrabarti et al SIGMOD98 X
Jensen & Neville SRLOO X
Getoor et al. IJCAIOL WS X
Taskar et al. UAIO2 X
Lu & Getoor ICMLO3 X
Neville & Jensen KDDO04 X
Sen & Getoor TRO7Y X X X
Maskassy & Provost JIMLRO7 X X X
Gupta et al. ICMLO7 X X
McDowell et al. AAAIO7 X X




® ® © | ocal Classifiers Used in ICA

NB LR DT KNN | wvRN
Chakrabarti et al. 1998 X
Jensen & Neville 2000 X
Lu & Getoor ICMLO3 X X
Neville et al. KDD04 X X
Macskassy & Provost IMLRO7 X
McDowell et al. AAAIO7 X X




® e & |CA: Learning
o label set: O O O

Learn model from fully labeled training set



®® @ |CA: Inference (1)

= (P
NG _
v,

Step 1: Bootstrap using object attributes only



® ® @ |CA: Inference (2)

= (P
e

Step 2: Iteratively update the category of each object,
based on linked object’s categories



® ® © Experimental Evaluation

o Comparison of Collective Classification Algorithms
Mean Field Relaxation Labeling (MF)
Iterative Classification Algorithm (ICA)
Loopy Belief Propagation (LBP)
Baseline: Content Only

o Datasets
Real Data
Bibliographic Data (Cora & Citeseer), WebKB, etc.

Synthetic Data

Data generator which can vary the class label correlations
(homophily), attribute noise, and link density



® ® ©® Results on Real Data

Algorithm
Content Only
ICA
Gibbs
MF
LBP

Cora
66.51

74.99
74.64
79.70
82.48

Sen and Getoor, TR 07

CiteSeer

59.77
62.46
62.52
62.91
62.64

WebKB

62.49
65.99
65.64
65.65
65.13



® ® © Effect of Structure

Varying link density for homophilic graphs
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Results clearly indicate that algorithms’ performance
depends (in non-trivial ways) on structure
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® ¢ ¢ Entity Resolution

o The Problem
o Relational Entity Resolution
o Algorithms
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The Entlty Resolutlon Problem
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Issues:
1. Identification
2. Disambiguation
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® ® & Attribute-based Entity Resolution
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1. Choosing threshold: precision/recall tradeoff
2. Inability to disambiguate
3. Perform transitive closure?




® ® © Entity Resolution

o The Problem
o Relational Entity Resolution
o Algorithms



® ® @ Relational Entity Resolution

o References not observed independently

Links between references indicate relations between
the entities

Co-author relations for bibliographic data
To, cc: lists for emall

o Use relations to improve identification and
disambiguation

Pasula et al. 03, Ananthakrishna et al. 02, Bhattacharya & Getoor
04,06,07, McCallum & Wellner 04, Li, Morie & Roth 05, Culotta &
McCallum 05, Kalashnikov et al. 05, Chen, Li, & Doan 05, Singla &
Domingos 05, Dong et al. 05




Relational Identification
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® & © Relational Disambiguation
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® ® ©® Relational Constraints

Co-authors are
typically distinct
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® ® @ Collective Entity Resolution
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® ® © Entity Resolution with Relations

o Naive Relational Entity Resolution
Also compare attributes of related references
Two references have co-authors w/ similar names

o Collective Entity Resolution
Use discovered entities of related references
Entities cannot be identified independently
Harder problem to solve



® ® © Entity Resolution

o The Problem
o Relational Entity Resolution

o Algorithms

Relational Clustering (RC-ER)
Bhattacharya & Getoor, DMKD’04, Wiley’06, DE Bulletin’06, TKDD’07
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CiteSeer.IST M. G. Everett, S. Johnson
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P2: “Partitioning Mapping of Unstructured Meshes to
Parallel Machine Topologies”, C. Walshaw, M. Cross, M.
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Stephen C. Johnson

From Wikipedia, the free encyclopedia

Steve Johnson spent nearly 20 years at Bell Labs and
AT&T, where he wrote Yacc, Lint, and the Portable C
Compiler.

Steve earned his Ph.D. in Mathematics, but has spent his

entire career in computing. He has worked on topics as
>
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® ® © Relational Clustering (RC-ER)
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® ® © Relational Clustering (RC-ER)
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Relational Clustering (RC-ER)
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Relational Clustering (RC-ER)
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® ® © Cut-based Formulation of RC-ER

_________________________________

_________________

S. Johnson

T

g

i i | Stephen C. i Stephen C.

® Alfred V. Aho & Johnson | Johnson
Good separation of attributes Worse in terms of attributes
Many cluster-cluster relationships Fewer cluster-cluster relationships
> Aho-Johnsonl, Aho-Johnson2, > Aho-Johnsonl, Everett-Johnson2

Everett-Johnsonl



® ® © ODjective Function

o Minimize:
> > w,sim, (C;.¢;) +Wesimg (c;, C;)
i j/, 4 /4 V\\
-~ / N
-~ / // \\
weight for  similarity of weight for Similarity based on relational
attributes attributes relations edges between c; and c;

o Greedy clustering algorithm: merge cluster pair with max
reduction in objective function

A(C;,C;)=W,sim, (¢ ,C; )+ We (IN(c)ININ(c;)D

l I
Similarity of attributes Common cluster neighborhood



® ® © Measures for Attribute Similarity

o Use best available measure for each attribute
Name Strings: Soft TF-IDF, Levenstein, Jaro
Textual Attributes: TF-IDF

o Aggregate to find similarity between clusters
Single link, Average link, Complete link
Cluster representative



® ® @ Relational Similarity: Example 1

_________________
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All neighborhood clusters are shared: high
relational similarity
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® ® @ Comparing Cluster Neighborhoods

o Consider neighborhood as multi-set

o Different measures of set similarity
Common Neighbors: Intersection size
Jaccard’s Coefficient: Normalize by union size
Adar Coefficient: Weighted set similarity

Higher order similarity: Consider neighbors of
neighbors



© N o 0 &

Relational Clustering Algorithm

Find similar references using ‘blocking’
Bootstrap clusters using attributes and relations

Compute similarities for cluster pairs and insert into priority
gueue

Repeat until priority queue is empty
Find ‘closest’ cluster pair
Stop if similarity below threshold
Merge to create new cluster
Update similarity for ‘related’ clusters

O(n k log n) algorithm w/ efficient implementation



® ® © Entity Resolution

o The Problem
o Relational Entity Resolution

o Algorithms
Relational Clustering (RC-ER)

Probabilistic Model (LDA-ER)
SIAM SDM’06, Best Paper Award

Experimental Evaluation



Probabilistic Generative Model
for Collective Entity Resolution

o Model how references co-occur in data

1. Generation of references from entities

2. Relationships between underlying entities
Groups of entities instead of pair-wise relations



Discovering Groups from
Relations

Stephen P Johnson
Chris Walshaw

Stephen C Johnson
Alfred V' Aho

Teffrey D Uliman

Parallel Processing Research Group Bell Labs Group

U >

P1: C. Walshaw, M. Cross, M. G. Everett, P4: Alfred V. Aho, Stephen C. Johnson,
S. Johnson Jefferey D. Ullman
P2: C. Walshaw, M. Cross, M. 6. Everett, P5: A. Aho, S. Johnson, J. Ullman

S. Johnson, K. McManus

P3: C. Walshaw, M. Cross, M. 6. Everett P6: A. Aho, R. Sethi, J. Ullman



Latent Dirichlet Allocation ER

SO0

0 < N =

A

Entity label a and group label z
for each reference r

©: ‘mixture’ of groups for each
co-occurrence

@,. multinomial for choosing
entity a for each group z

V,: multinomial for choosing
reference r from entity a

Dirichlet priors with o and B



o0 .
Entities

o Entities are not directly observed
1. Hidden attribute for each entity
2. Similarity measure for pairs of attributes

o Addistribution over attributes for each entity

Stephen C Johnson

S C Johnson Stephen C Johnson S Johnson Alfred Aho
0.2 0.6 0.2 0.0

Generating References from

\~~
—

0.0



Approx. Inference Using Gibbs
Sampling

o Conditional distribution over labels for each ref.

o Sample next labels from conditional distribution

o Repeat over all references until convergence
n5T+a/T niT+pB/A

. /
P{Z/-—f'lz_,,a,r‘)oc nc[l)/z:_|_a R ﬂ:;_r+ﬁ

n. +BlA
Z,G_,- 'r‘)oc AT

Ne, +p

Pla.=a

X 5/ m(r/ /Va )

o Converges to most likely number of entities



Faster Inference: Split-Merge
Sampling

o Naive strategy reassigns references individually

o Alternative: allow entities to merge or split
o For entity a, find conditional distribution for
1. Merging with existing entity a,
2. Splitting back to last merged entities
3. Remaining unchanged

o Sample next state for a; from distribution

o O(n g+ e)time per iteration compared to O(n g + n e)



® ® © Entity Resolution

o The Problem
o Relational Entity Resolution

o Algorithms
Relational Clustering (RC-ER)
Probabilistic Model (LDA-ER)
Experimental Evaluation



® ® ® Evyaluation Datasets

o CiteSeer
1,504 citations to machine learning papers (Lawrence et al.)

2,892 references to 1,165 author entities

o arXiv
29,555 publications from High Energy Physics (KDD Cup’03)

58,515 refs to 9,200 authors

o Elsevier BioBase
156,156 Biology papers (IBM KDD Challenge '05)

831,991 author refs
Keywords, topic classifications, language, country and affiliation
of corresponding author, etc



o)

Baselines

A: Pair-wise duplicate decisions w/ attributes only
Names: Soft-TFIDF with Levenstein, Jaro, Jaro-Winkler
Other textual attributes: TF-IDF

A*: Transitive closure over A

A+N: Add attribute similarity of co-occurring refs
A+N*: Transitive closure over A+N

Evaluate pair-wise decisions over references
F1-measure (harmonic mean of precision and recall)



® ® % ER over Entire Dataset

Algorithm CiteSeer arXiv BioBase
A 0.980 0.976 0.568
A* 0.990 0.971 0.559
A+N 0.973 0.938 0.710
A+N* 0.984 0.934 0.753
RC-ER 0.995 0.985 0.818
LDA-ER 0.993 0.981 0.645

o RC-ER & LDA-ER outperform baselines in all datasets

o Collective resolution better than naive relational resolution

o RC-ER and baselines require threshold as parameter
Best achievable performance over all thresholds

o Best RC-ER performance better than LDA-ER
o LDA-ER does not require similarity threshold

Collective Entity Resolution In Relational Data, Indrajit Bhattacharya and Lise Getoor,
ACM Transactions on Knowledge Discovery and Datamining, 2007



® ® % ER over Entire Dataset

Algorithm CiteSeer arXiv BioBase
A 0.980 0.976 0.568
A* 0.990 0.971 0.559
A+N 0.973 0.938 0.710
A+N* 0.984 0.934 0.753
RC-ER 0.995 0.985 0.818
LDA-ER 0.993 0.981 0.645

o CiteSeer: Near perfect resolution; 22% error reduction
o arXiv: 6,500 additional correct resolutions; 20% error reduction
o BioBase: Biggest improvement over baselines



® ® © Performance for Specific Names

cho_h 0.80 1.00
davis_a 0.67 0.89
kim_s 0.93 0.99 arXiv
K-y o oo Significantly larger
,ee:J. 098 100 |mprovements for
liu_ 0.95 0.97 ‘ambiguous names’
sarkar_s 0.67 1.00
sato_h 0.82 0.97
sato_t 0.85 1.00
shin_h 0.69 1.00
veselov_a 0.78 1.00
yamamoto_k 0.29 1.00
yang_z 0.77 0.97
zhang_r 0.83 1.00
zhu_z 0.57 1.00




Trends Iin Synthetic Data

| A 8 A* = RCER|

I Bigger improvement with
0.9 . .

. \\\L\. bigger % of ambiguous refs
08 \ more refs per co-occurrence
. | | | \, more neighbors per entity
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® ® ¢ Roadmap

o Intro to Link Mining
Link Mining Tasks
Link Mining Challenges

o Some Link Mining Algorithms
Collective Classification
Entity Resolution
Link Prediction

o Conclusion



®® % | Ink Prediction

o The Problem
o Predicting Relations
o Algorithms

Link Labeling

Link Ranking
Link Existence



®® @ | inks In Data Graph

Node 1 [« » Node 2

: Email .
chris@enron.com < > liz@enron.com
Communications Graph . ) IM T
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®®® — Links in Information Graph
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Network Graph
Nodes: Entities
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Tim



® ® © Predicting Relations

o Link Labeling
Can use similar approaches to collective classification

o Link Ranking

Many variations

Diehl, Namata, Getoor, Relationship Identification for Social
Network Discovery, AAAIO7

‘Leak detection’
Carvalho & Cohen, SDMO0O7

o Link Existence
HARD!
Huge class skew problem
Variations: Link completion, find missing link



® ® ¢ Roadmap

o Intro to Link Mining
Link Mining Tasks
Link Mining Challenges

o Some Link Mining Algorithms
Collective Classification
Entity Resolution
Link Prediction

o Conclusion



® @ @ Putting Everything together....

Collaborative Social

Network Discovery
Entity Resolution
Relationship Identification

Communications Graph Network Graph
Nodes: Network References Nodes: Entities
Edges: Communications Events Edges: Social Relationships



® ® @ | earning and Inference Hard

o Full Joint Probabilistic Representations

Directed vs. Undirected

Require sophisticated approximate inference
algorithms

Tradeoff: hard inference vs. hard learning

o Combinations of Local Classifiers
Local classifiers choices

Require sophisticated updating and truth
maintenance or global optimization via LP

Tradeoff: granularity vs. complexity

Many interesting and challenging research problems!!




® ® © Caveat: Link Mining & Privacy

o Obvious privacy concerns that need to be taken into
account!!!

o A better theoretical understanding of when
prediction is feasible will also help us understand
what must be done to maintain privacy of graph data

o ... Graph Re-ldentification: study of anonymization
strategies such that the information graph cannot
be inferred from released data graph



Disease data

has hypertension

father-of

Link Re-ldentification

Communication data
Robert Lady

?

g-
5,
s
1)

call

Search data

Query 1:

“how to tell if your wife is cheating on you”

same-user

Query 2:

“myrtle beach golf course job listings”

Zheleva and Getoor, Preserving the
6raph Data, PINKDD 2007

Privacy of Sensitive Relationshops in



oo Attribuwtgmoljsclosure INn OSNSs

| Emily Schneeweis g0t uo
sheets ng, bils.

Displaying members of Sarah Palin is NOT Hillary Clinton.

group a‘ffllla‘tlon 500+ Members No Officers

5 Admins
b4 Name Kim Hennessey
‘‘‘‘‘‘ Network Washington, DC
B — =
Emily has 78 friends.
i Elise Labott i ;
“— private profile
| Networks Turner Broadcasting Name Alx Healy
CNN Network Washington, DC
Paul Barry _ J&—— public profile
Message | View Friends
Networks: Washington, DC
Name Elise Labott
. . Network i
Daniela Araujo i Z:‘:‘e' Broadcasting

Message | View Friends

Networks: The World Bank

Zheleva and Getoor, To Join or Not to Join: the Illusion of Privacy in
Online Social Networks, WWW 2009



® ® @ Conclusion

o Relationships matter!
o Structure matters!

o Killer Apps:
Biology: Biological Network Analysis
Computer Vision: Human Activity Recognition
Information Extraction: Entity Extraction & Role labeling
Semantic Web: Ontology Alignment and Integration
Personal Information Management: Intelligent Desktop

o While there are important pitfalls to take into account
(confidence and privacy), there are many potential
benefits and payoffs!



Thanks!

http://www.cs.umd.edu/lings

Work sponsored by the National Science Foundation,
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